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Abstract In early work of March and Young (Phil Mag 4:384, 1959), it was pointed
out for spin-free fermions that a first-order density matrix (1DM) for N − 1 particles
could be constructed from a 2DM (�) for N fermions divided by the diagonal of the
1DM, the density n(r1), as 2�(r1, r′

2; r1, r2)/n(r1) for any arbitrary fixed r1. Here,
we thereby set up a family of variationally valid 1DMS constructed via the above
proposal, from an exact 2DM we have recently obtained for four electrons in a quintet
state without confining potential, but with pairwise interparticle interactions which
are harmonic. As an indication of the utility of this proposal, we apply it first to the
two-electron (but spin-compensated) Moshinsky atom, for which the exact 1DM can
be calculated. Then the 1DM is found for spin-polarized three-electron model atoms.
The equation of motion of this correlated 1DM is exhibited and discussed, together
with the correlated kinetic energy density, which is shown explicitly to be determined
by the electron density.

1 Background and outline

A lot of interest is currently centering on the use of low-order density matrices (DMS)
in the many-body theory of atoms, molecules and clusters. The importance of such
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DMS was already clear to Löwdin [1] more than half a century ago, and has been
summarized by Coleman [2]. Early work of March and Young [3–5] is also highly
relevant in the present context of variationally valid low-order density matrix theory.

Here we shall mainly be concerned with a few electrons (N = 2, 4) in model
atoms, though we shall also briefly refer to electron densities which transcend spherical
symmetry (e.g. by applying an electric field to say the Be atom). For reasons that will
become clear below, the focus of our work will be on the spin-polarized quintet and
quartet states in relation to models of Be and Li atoms respectively.

Some quantitative background to the above will be set out immediately below for
the reader’s convenience. Following Löwdin [1], and neglecting spin, with N Fermions
we assume at the outset an antisymmetric wave function�(r1, r2, . . . , rN ) such that,
in finite systems, it is normalized to unity.

Then the first- and second-order DMS, denoted respectively by γ and�, are defined
by

γ (r′
1, r1) = N

∫
�∗(r′

1, r2, . . . , rN )�(r1, r2, . . . , rN ) dr2 . . . drN . (1)

and

�(r′
1, r′

2; r1, r2) = N (N − 1)

2

×
∫
�∗(r′

1, r′
2, r3, . . . , rN )�(r1, r2, r3, . . . , rN ) dr3 . . . drN .

(2)

Evidently, the density n(r) then can be found from the diagonal of the 1DM in Eq. (1).
March and Young [3] next consider the function � defined by

�(r2, . . . , rN ; r1) =
( N

n(r1)

) 1
2
�(r1, r2, . . . , rN ) (3)

which is readily shown to satisfy the normalization condition

∫
�∗(r2, . . . , rN ; r1)�(r2, . . . , rN ; r1) dr2 . . . drN = 1. (4)

March and Young [3] demonstrated, because� as defined in Eq. (3) is antisymmetric
in r2, r3, . . . , rN , that it can be utilized to construct the DMS for N − 1 Fermions, as
follows

γN−1(r′
2, r2; r1) = 2�(r1, r′

2; r1, r2)

n(r1)
. (5)

This is a 1DM for N − 1 Fermions, for any arbitrary fixed r1. This result is the key
to what follows, the outline of which is briefly as summarized immediately below. In
Sect. 2, a two-Fermion example is given, even though not spin polarized, in which a

123



J Math Chem (2013) 51:763–773 765

1DM for one-level occupancy is presented as a rather gentle introduction to the main
Sect. 3 of the article. There use is made of the work of Bruch [6] in which four Fermions
of spin half, mutually interacting with pairwise attractive harmonic interactions, and
in the quintet state, are considered. Bruch’s achievement was to calculate the spatial
wave function exactly for this four Fermion spin-polarized state with translational
invariance. The March and Young (MY) proposal is then used in Sect. 3 to calculate a
1DM for three spin-polarized spin half Fermions in therefore a quartet state. Section 4
constitutes a summary, together with proposals for future work which should prove
fruitful.

Thus, we turn immediately to our first quite simple example: the two-Fermion
Moshinsky model with both harmonic confinement and pairwise harmonic forces.

2 Spin-compensated density matrices: test of March–Young (MY) proposal on
the Moshinsky model

Using the two-electron Moshinsky atom with external potential Vext (r) = 1
2 kr2 and

interparticle interaction u(r12) = 1
2 Kr2

12, one of us [7] has earlier given the correlated
1DM for k = 1. Generalizing away from this value to a general k, the spatial ground-
state spin-compensated wave function has the general shape

�(r1, r2) = C e−C1(r2
1 +r2

2 )e−C2r1·r2 , (6)

where C,C1 and C2 are known in terms of k and K force constants. These relations
are summarized in Eq. (38) of the “Appendix”. The corresponding 2DM in the desired
form to test the MY proposal in [3], given also below in Eq. (9) is evidently

�(r1, r′
2; r1, r2) = C2e−C1(r2

2 +r ′2
2 +2r2

1 )e−C2r1·(r′
2+r2). (7)

Multiplying by two and integrating over r1 we get the 1DM γ (r′
2, r2) as

γ (r′
2, r2) = 2

(
π

2C1

) 3
2

C2e
−C1(r2

2 +r ′2
2 )+

C2
2

8C1
|r2+r′

2|2 . (8)

Evidently therefore n(r1) needed in Eq. (5) is simply a Gaussian e(−2C1+C2
2/2C1)r2

1

multiplied by a constant for normalization of the Fermion density to two electrons.
Hence, for one-particle, assuming the unproved (for spin-compensated case used

here) MY result, Eq. (5), the 1DM for N − 1 = 1 reads

γ1(r′
2, r2; r1) = 2�(r1, r′

2; r1, r2)

n(r1)
(9)

and from Eqs. (7)–(9) we find

γ1(r′
2, r2; r1) = d e−C1(r2

2 +r ′2
2 )e−C2r1·(r′

2+r2), (10)
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where

d =
(

2C1

π

) 3
2

e(−C2
2/2C1)r2

1 (11)

is a constant which depends on r1. Hence the density n1 is given by n1(r2; r1) as

n1(r2; r1) = d e−2C1r2
2 e−2C2r1·r2 . (12)

Given the MY relation as valid in this case , for fixed arbitrary r1, the result (12) must
satisfy the von Weizsäcker equation for one-level occupation as

∇2
r2

n
1
2 (r2; r1)+ 2m

h̄2

(
ε − V (r2; r1)

)
n

1
2 (r2; r1) = 0 (13)

for arbitrary fixed r1 and also we note that ε depends on this quantity. Hence, to
within the energy ε appearing in Eq. (13), the Slater–Kohn–Sham one-body potential
V (r2; r1) can be extracted. This, in general, is not spherically symmetric in r2, because
of the appearance of the scalar product r1 · r2 in the exponent in Eq. (12). The result
is given by

2m

h̄2 V (r2; r1) = 4C2
1 r2

2 + 4C1C2 r1 · r2. (14)

Of course, for r1 (or C2) set equal to zero we have simply harmonic confinement.
We shall come back to generaliztion of the von Weizsäcker Eq. (13) in Sect. 3, to

which we now turn.

3 A variationally valid 1DM for three particle Li-like quartet states

We return to the major focus of this article: namely to use the MY result in Eq. (9) in
a proven case of complete spin polarization. Thus, the present authors have recently
calculated the exact correlated 2DM for the quintet state of the four-electron Moshinsky
atom [9], but with the confining potential switched off. Then, Eq. (5), for (N−1 = 3),
reads

γ3(r′
2, r2; r1) ∝ �(r1, r′

2; r1, r2) (15)

since the “density” n(r1) = γ (r1, r1) is itself simply a constant because of the trans-

lational invariance of the starting Hamiltonian. The 2DM � is given by [9] (ω =
√

K
m )

as

�(r′
1, r′

2; r1, r2) ∝
{( 4h̄

mω
− |R − R′|2)r · r′ + (R · r)(R · r′)+ (R′ · r′)(R′ · r)

−(R′ · r)(R · r′)−(R · r)(R′ · r′)
}

× e− mω
4h̄

(|R−R′|2+r2+r′2)
, (16)
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r and R being defined (the primed coordinates are defined in the same way but with
primes instead) by

R = r1 + r2

2
, r = r1 − r2. (17)

The density n3(r2; r1), which is normalized to three Fermions, can be calculated with
the pair density �(r1, r2; r1, r2) . This gives n3(r2; r1) as

n3(r2; r1) = 2

π
3
2

(
mω

2h̄

) 5
2

r2e− mω
2h̄ r2

(18)

or equivalently

n3(r2; r1) = 2

π
3
2

(
mω

2h̄

) 5
2 (

r2
2 + (r2

1 − 2r1 · r2)
)

×e− mω
2h̄ (r

2
1 −2r1·r2)e− mω

2h̄ r2
2 . (19)

Evidently, the simplest choice r1 = 0 yields

n3(r2; r1 = 0) = 2

π
3
2

(
mω

2h̄

) 5
2

r2
2 e− mω

2h̄ r2
2 (20)

which is, of course a spherical electron density. But for all other choices of the vector
r1, the density n3(r2; r1) in Eq. (19) becomes non-spherical. Again, as proposed in the
two-electron (singlet) case in Sect. 2, one can get a family of spherical correlated elec-
tron densities for three spin-polarized Fermions by averaging over the angle between
r2 and r1 in Eq. (19).

Before turning to the off-diagonal form γ3(r′
2, r2; r1) of Eq. (19), let us use its

diagonal element n3(r2; r1) to extract a “bosonization” generalization of the argument
in Sect. 2 based on Eq. (13). Since we are now dealing with three parallel spin electrons,
we must generalize the one-body potential V (r2; r1) entering the equivalent of Eq. (13)
to include the Pauli potential [10,11] Vp(r2; r1): i.e. the total potential in Eq. (13)
becomes V + Vp. Hence we can immediately write, to within an additive “constant”,
now involving r1 of course, the generalization of Eq. (13) as

2m

h̄2

(
V (r2; r1)+ Vp(r2; r1)

)
= ∇2

r2
n

1
2
3 (r2; r1)

n
1
2
3 (r2; r1)

. (21)

But from Eq. (18)

n
1
2
3 (r2; r1) =

√
2

π
3
4

(
mω

2h̄

) 5
4

re− mω
4h̄ r2

, (22)
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where r = |r2 − r1|. Hence, we find the explicit form

2m

h̄2

(
V (r2; r1)+ Vp(r2; r1)

) = 2

r2 +
(

mω

2h̄

)2

r2. (23)

It is relevant to note from DFT [12] that (see also [11])

Vp = δTs

δn
− δTW

δn
, (24)

Ts and TW being the single-particle and von Weizsäcker kinetic energy respectively.
δTW
δn is given explicitly by [12]

m

h̄2

δTW

δn
= 1

8

(∇n

n

)2

− 1

4

∇2n

n
. (25)

We return now to the off-diagonal 1DM γ3 for three spin-polarized Fermions given in
Eq. (15), when the right hand side is obtained from Eq. (16) by putting r′

1 = r1. The
proportionality constant is found from the fact that its diagonal is given in Eq. (18).
Hence, we have

γ3(r′
2, r2; r1) = 1

π
3
2

(
mω

2h̄

) 7
2
{( 4h̄

mω
− |R − R′|2

)
r · r′

+(R · r)(R · r′)+ (R′ · r′)(R′ · r)

−(R′ · r)(R · r′)− (R · r)(R′ · r′)
}

×e− mω
4h̄

(|R−R′|2+r2+r′2)
. (26)

Evidently, the correlated kinetic energy t3(r2; r1) for arbitrary fixed r1 is then to be
found from

t3(r2; r1) = − h̄2

2m
∇2

r2
γ3(r′

2, r2; r1)

∣∣∣∣
r′

2=r2

= h̄ω

4π
3
2

(
mω

2h̄

) 5
2
(

25

2
r2 − mω

h̄
r4

)
e− mω

2h̄ r2
. (27)

But utilizing Eq. (18), Eq. (27) can be rewritten in terms of n3(r2; r1) as below:

t3(r2; r1) = h̄ω

8

(25

2
− mω

h̄
r2

)
n3(r2; r1). (28)

To proceed further, it can be found from Eq. (18) that

(
2 − mω

h̄
r2

) r
r2 = ∇n3

n3
(29)
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and from it, these relations follow:

h̄ω
(
4 − mω

h̄
r2) = h̄2

m

( 4

r2 − |∇n3|2
n2

3

)
(30)

and

h̄ω = h̄2

mr2

(
2 − ∇n3 · r

n3

)
. (31)

Now, by using Eqs. (30) and (31), finally Eq. (28) becomes

t3(r2; r1) = h̄2

8m

(21

r2 n3 − 17

2

∇n3 · r
r2 − |∇n3|2

n3

)
. (32)

Figure 1 shows the form of Eq. (27) for t3 compared with n3 in Eq. (18). The total
kinetic energy can be calculated by integration from Eq. (27) and it yields

T =
∫

t3(r2; r1) dr2 = 45

16
h̄ω. (33)

To complete this section, we turn to the equation of motion of the correlated 1DM
γ3. Amovilli and March [13] have expanded γ3 in a complete set of Slater–Kohn–Sham
orbitals ψi (r), which can be taken as real in the absence of a magnetic field. In [13],
it is then demonstrated that γ3 satisfies the partial differential equation of motion

(∇2
r2

− ∇2
r′

2
)γ3(r′

2, r2; r1) = 2m

h̄2

(
V (r2; r1)− V (r′

2; r1)+�(r2, r′
2; r1)

)

×γ3(r′
2, r2; r1). (34)

The potential V (r) is the DFT one-body potential which generates, by definition the
Slater–Kohn–Sham orbitals. In Eq. (34),� is written in [13] in terms of the coefficients
ni j entering the expansion of γ3 in Slater–Kohn–Sham orbitals ψi (r), the eigenvalues
εi being involved through the difference εi −ε j. But our interest here is in the one-body
potential V (r), which already enters Eq. (23), but added to the Pauli potential Vp(r).
Our aim below is to obtain both V (r) and Vp(r) for the above model. Using γ3 in
Eq. (34) gives

V (r2; r1) = 3

16
mω2r2. (35)
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(a)

(b)

Fig. 1 a Plot of the correlated kinetic energy density versus r2 for three particles as in Eq. (27). b Plot for
the correlated density in Eq. (18). Here, r1 is set equal to zero and ω = 1

This result comes directly from the explicit form of Eq. (34), namely

(∇2
r2

− ∇2
r′

2
)γ3(r′

2, r2; r1)

= (3m2ω2

8h̄2

)(|r2 − r1|2 − |r′
2 − r1|2

)
γ3(r2, r′

2; r1)

+(m2ω2

32h̄2

)
r · r′(r + r′) · (r2 − r′

2)e
− mω

4h̄

( |r2−r′2 |2
4 +r2+r ′2)

. (36)

The first term on the left hand side of Eq. (36) can readily be seen to yield Eq. (35).
The final term in this model as set out in [13] involves off-diagonal occupations number
plus differences in one-electron eigenvalues, as referred to already below Eq. (34).
Hence from Eq. (23) we can calculate the Pauli potential Vp. The important term at

small r is 3h̄2

8mr2 . The sum of V and Vp at large r is already clear from Eq. (23) as

proportional to r2. But from DFT, V plus Vp entering Eq. (23) is a functional of the
density n3, just as for t3.
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Fig. 2 Calculated one-body spherical potential V̄ (r2; r1) from Eq. (40), with C2r1 and C1 equal to one

4 Summary and future directions

The aim of the present study has been to examine some consequences for the 1DM
of the MY proposal in Eq. (5), (see Eq. (9) for N = 2 and also the end of Sect. 1
for an arbitrary number N of Fermions). Two potentially important cases have been
discussed. The more profound of these is to display a correlated 1DMS for the three-
electron spin-polarized systems, having both non-spherical and spherical Fermion
densities on the diagonal. In the non-spherical case (e.g. appropriate when an electric
field is switched on to an initially spherical model atom) the equation of motion of
the correlated 1DM is derived, following the study of Amovilli and March [13]. In
the simpler example of the two-electron Moshinsky atom, the MY proposal has led us
to families of both spherical and non-spherical densities. For the non-spherical case,
the one-body potential leading to the one-level density n1 is attractively compact, and
is given in Eq. (14). Also Eq. (12) is used in Sect. 2 to derive the one-body potential
set out in Eq. (40), see also Fig. 2. But the result to be especially emphasized is
the correlated kinetic energy density t3 in Eq. (27) which is shown in Eq. (32) to be
expressible solely in terms of the density n3 plus ∇n3. The variationally valid three-
Fermions 1DM γ3 leads to the kinetic energy T [n,∇n] given in Eq. (32). Performing
the functional derivative in the case of spherical symmetry (r1 = 0) yields

δT

δn(r)
= 21h̄2

8mr2 − 17

2

δ

δn(r)

∫ ∇n3 · r
r2 dr − δTW

δn(r)

= 59h̄2

16mr2 − δTW

δn(r)
, (37)

which is, though for a special model, relevant for the theorems of DFT.
As to the future, it will be worthwhile to attempt the generalization of the present

proposal to treat spin-compensated states and also partial spin-polarization for general
N . Then, the further exact wave functions with translational-invariance given by Bruch
[6] for Fermions with pairwise harmonic attractions for N = 4 should lead to new
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interacting correlated 1DMS for three electrons, which may well have interesting
practical applications in atomic physics as well as in quantum chemistry.
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5 Appendix: Some technical details relating to Section 2

The Moshinsky wave function in Eq. (6) is written completely in terms of two quantity
C1 and C2 and the normalization constant C . These are given below explicitly in terms
of the force constant k of the external potential and K for the interparticle interaction
u(r12):

C = β
3
2

2
√

2π
3
2 a3

, C1 = 1 + β2

8a2 , C2 = 1 − β2

4a2 ,

a =
( h̄

2
√

m k

) 1
2
, β =

(2K + k

k

) 1
4
. (38)

Next, We turn to the density n1 in Eq. (12). We summarize below a spherical family
of one-level electron densities and the corresponding one-body potential. This family
is constructed explicitly by multiplying Eq. (12) by volume element d and integrate
over the angle between r1 and r2 to find

n̄1(r2; r1) = d

C2r1r2

(
eC2r1r2 − e−C2r1r2

)
e−2C1r2

2 . (39)

With this density n̄1 inserted for n in the von Weizsäcker Eq. (13) we extract the
one-body potential V̄ (r2; r1) to within an additive constant, as

2m

h̄2 V̄ (r2; r1) = − 1

4r2
2

+ 4C2
1r2

2 −
(C2r1

2

)2
coth2 (C2r1r2)

+
(C2r1

2r2
− 2C1C2r1r2

)
coth (C2r1r2). (40)

This means that the Schrödinger equation can be solved exactly for this potential
V̄ (r2; r1) for arbitrary r1, the corresponding wave function �̄ being simply the square
root of the right hand side of Eq. (39). Figure 2 depicts the general shape of the potential
in Eq. (39) for a particular choice of C2r1 and C1.
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